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ABSTRACT - We repodﬁ(m a parhally implemented interactive computer aided-design tool for
software engineering. A distinguishing characteris hcl_gr ﬂgﬁlsprwect is its concern for the
evolutionary character of softwarc systems. Our—preject draws a distinction between algorithms
and systems, centering its attention on uppor& for the system designer. Aithough verification has
played a large role in reccent rescarch, ~eu? per pective suggests that the complexity and
evolutionary nature of software systems requnrgé/a nuraber of additional techniques, Wh\(h are
described m this paper. —/, T ¥

The manaamo of complexity is a fundamental issue in all engineering disciplines. We\ldentlfy
three major techniques used in mature enzineering fields which seem applicable to the
engineering of software systems: incremental modelling; multiple and almost hierachical
decoraposition; and analysis by inspection. Along these hneszwel have () Constructed a plan
library to aid in analysis by inspection (the analysis of a program based on identifying standard
algorithms and methods in it) (i!) Identified a swall set of plan building mefhods which can be
used o decompose a software system into looscly coupled subsysters; ‘(:(}46) Developed the
technique of tewporal abstraction which rakes it possible to model a program fr m a viewpoint
which clearly separates the actions of generators and consumers of data)- and ( ; Developed a
dependency-based reasoning system uniquely suited to incremental and evolutionary program
analysis. These rmcthods arc substantially language independent and have been applied to

programs written in several commonly used languages. %
*This paper was adapted from a proposal to the National Science Foundataion.

This report describes research conducted at the Artificial Intelligence Laboralory and at the
Laboratory for Computer Science of the Massachusetts Institute of Technology. Support for the
Artificial Intelligence Laboratory’s Artificial Intelligence research is provided in part by the
Advanced Research Projects Agency of the Department of Defense under Office of Naval Research
contract MNO0014-75-C-0643. Support for the Laboratory for Computer Science’s research is
provided in part by the Advanced Research Projects Agency of the Department of Defense under
Office of Naval Research contract NO0014-75-C-0661.
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l. The Nature of The Problem
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Large software systems are expensive to design and implement, and even more expensive to
maintain. The following anecdote is indicalive of the kind of difficultics which are all too typical.
A major coramercial firm undertook the development of a large financial software syster about
seven years ago. The project began with the careful development of a complete design which
was then implemented. This effort took four or five years, required six full time prograrmers and
cost roughly five million dollars. During the course of the implementation effort, many of the
initial design features were found to be unsatisfactory. Furthermore, the firm’s business practices
and the applicable government regulations underwent nuracrous revisions as time went by. These
factors resulted in a series of modifications to the system which were documented poorly if at all.
Although the program at present is known to have certain bugs, it has been very useful. In fact it
is so useful that the firm would like to modify the program for use in other departments and on
other computers. However, no one really knows how it works anymore. The current staff of the
project has no programmer who has been involved with the system for more than eleven months.
The only compicte documentation is the original design, now six years out of date. The firm is
faced with the prospect of redesigning and recoding the entire system from the ground up.

The cvolutionary nature of systems is a central feature in the current software crisis. The
specifications change, the design changes, and, as buzs are discovered, the implementation rust
be changed to fix them. One of the driving forces behind this is the desire for new features. This
is prompted by two main faclors. First, it is not possible for the designers or the potential users
of a system to foresee all of the opportunities for the system’s use. Second, the environment in
which the system operates is itself subject to change. New regulations, busincss practices and
technology appear and force modifications to the system.

A dominant problem in the design of large software systems is how to rmanage and limit the
apparent comple:aty of the situation so that some reasonable solution can be produced. 1f all of
the relevant constraints were considercd at once in order to try to arrive at a perfect solution in
the first place, the details would overwhelm hurian cognitive capacity. A more effective strategy
is to start with a solution which is rcasonably close to being correct, and then to modify it
repeatedly until a solution is reached which meets the actual needs. Thus there is both an
internal and an external cause for the cvolutionary naturc of software.

Automatic verification attacks the problem of evolution by attempting to eliminate the need
for change. If a program is verified at the start, then bugs will not surface later and therefore
the program will not have to be modified in order to fix them. However, automatic verification can
be at most only part of the <olution to the software problem because it does not attack the
external sources of change such as changing government regulations. A second use for
verification is in the certification of software systems. Such facilities are highly desirable but
they do not eliminate the need for other lypes of support during the process of developing code
good enouzh to warrant the effort of certification.

We suzgest that what is needed in addition is a computer aided design tool which can help a
programmer deal with prograr evolution from the initial design phase right through the continuing
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maintenance phase. We imagine a system (such as the Programmer’s Apprentice [Hewitt & Smith
1975: Rich & Shrobe 1976,78; Waters 1976,78,79])) which can function as a "junior programrmer™
might. Such a system does not need to be able to certify the correctness of an entire software
system. Rather, it must provide the designers and coders with relevant information which helps
them to belter understand the conscquences of modifications. The system would be relatively
knowleseable, but not an expert programmer itself. It would be able to understand, explain, and
reason about programs in terms familiar to a programrcr. Its main virtue would be its ability to
select from the vast annotation associated with a software system the small part which is relevant
to whatever task the programmer is currently conducting. We propose to develop the
fundariental principles behind such systems and to construct a prototype system which meets
many of thesc desiderata.

Il. An Idealized Scenario

In order to indicate the kind of system we have in mind, this section presents an imaginary
scenerio showing an expert programmer interacting with a Programmer’s Apprentice during the
design and coding of a hashed associative retrieval system. Natural English dialog is used in the
example in order to make the presentation more comprehensible. However, natural language
understanding and generation are beyond the scope of the work proposed here.

PROGRAMMER: [ want to make a hashed associative retrieval system for tree-structured facts.
Every fact will be stored in cach of the buckets hashed to by ane of its leaf nodes. 1 am
going to start by coding the insert routine. Here is the code:

(DEFUN INSERT (FACT) (INSERTI FACT 1))
(DEFUN INSERT1 (FACT POSITION)
(COKD ((ATOM FACT) (BUCKET-INSERT FACT (HASH FACT POSITION TABLESIZE)))
(T (INSERT1 (CAR FACT) (% POSITION 2))
(INSERT1 (COR FACT) (+ (% POSITION 2) 1)))))

APPRENTICE: I do not understand this code completely. I see that you are doing a tree-traversal
over the fact terminated at atomic nodes, and that you are doing a BUCKET- INSERT for each of
these terminal nodes. However, I do not understand what the computation involving POSITION
is for, nor why HASH takes POSITION as an argument. The hashing algorithras | know about take
only two arguments: a key, and a table size, and compute an index smaller than the size.

PROGRAMMER: In this systerm HASH takes two arguments in addition to the size argument: an atom
from the fact and a number (POSITION) which uniqucly identifies the position of the atom in the
tree structure of the fact. Like a standard hash, it computes an index smaller than the size.
POSITION makes it possible 1o distinguish between different occurences of the sarme atom in a
“fact.

APPRENTICE: I still do not complctely understand how INSERT works. How is BUCKET-INSERT going
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to work?

PROGRAMMER: In this design, buckets will be ordered lists of facts. BUCKET-INSERT will fetch the
bucket in the hash table indexed by its second argument and then use the standard ordered
list insertion algorithm to splice its first argument into the bucket by side-effect..

APPRENTICE: I understand the design, but there is a mistake. If the new fact needs to be put at
the very front of the list, then it is not possible to splice it in.

PROGRAMER: In that situation, GUCKET- INSERT will just cons it onto the front of the list.

APPRENTICE: That will not work cither. You want the fact to becore a merber of the bucket in
the hash table, but this will not happen in the case where it is merely consed onto the front.
The bucket in the table will still be the old list which is the COR of the newly created list.

PROCRAMMER: OK, In that situation, BUCKET-INSERT will not only cons the new fact on, but also
store the recult in the appropriate table entry.

APPRENTICE: That seems to fix the problem, however, there is a problem in INSERT. You said that
the fact itself was to be put into each of the buckets hashed to. However, the way the code
is written, what is inserted is FACT which is the alom being hashed on, and not the whole fact.

PROGRAMMER: You are right again. I should make the whole fact be an argument to INSERTI, and
pass it to BUCKET-INSERT. Can you make that change?

APPRENTICE: Yes, here is what the code looks like now.

(DEFUN INSERT (FACT) (INSERT1 FACT 1 FACT))
(DEFUN INSERT1 (FACT POSITION WHOLE-FACT)
(COND ((ATOM FACT) (BUCKET-INSERT WHOLE-TACT (HASH FACT POSITION TABLESIZE)))
(T (INSERT1 (CAR FACT) (* POSITION 2) WHOLE-FACT)
(INSERT1 (CDR FACT) (+ {* POSITION 2) 1) WHOLE-FACT))))

APPRENTICE: There is still a problem, from what I know about this kind of hash table, each fact
should be in any one bucket at most once. However, I cannot prove that duplicates will not
be inserted. In general, hashing causes collisions and neither INSERT1 nOr BUCKET-INSERT does
anything to prevent a fact from getting put in a bucket twice if it hashes to the same index
twice.

PROGRAMMER: Ah yes. To fix this, 1 will break INSERT up into two parts: one, called INDEX, which

« determines the <et (as opposed to the multi-set) of indices associated with a fact, and the
other (still called INSERT) which will call BUCKET-INSERT in order to insert the fact into the
corresponding buckets. [And so the scenerio continues ...]

This «cenario illustrates several of the facilitics the type of system we have in mind must
provide. [irst, it muct interact with the programmer during the design phase checking that the
design is coherent and achicves its stated goals. Sccond it raust record a representation of the
logical structure underlying the design so that this may be used to detect bugs and guide
evolutionary changes. Third, the apprentice must be able to recognize comron design patterns
within the code and to explain these in familiar, high level terms. It must also use these to
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structure its understanding of the design in ways which make it convenient to reason about the
program and about proposed modifications to it.

lll. Types of Programs == Algorithms versus Systems

It is important to distinguish between two quite different kinds of programs: algorithms and
systeras. Each kind of program is imnportant to software engineering. However, they present quite
different demands and requireménts. We argue that current program verification techniques are
most useful and necessary for algorithms. The thrust of our work is directed towards the
problerms inherent in the design of systems.

Algorithre and systeras differ along two primary dimensions: the character of their
specifications, and the sources of their complexity. In general, an algorithm is a relatively short
prograr which is precisely and concicely specified. For example, the Knuth-Morris-Pratt and the
Boyer-Moore string matching alzorithmis each require roughly 100 lines of code but have a very
short precise specification: the answer returned is the position of the first substring of the text
which maltches the input paltern. An algorithm is built to satisfy a precisely stated specification
which has general utility. Therefore it is reasonable to expect that this specification will not have
to evolve in the future. As a result, the effort required to actually verify the program can reap
benefits far into the future. For example, Euclid’s algorithr has survived unchanged for thousands
of years.

In contrast to algorithms, software systems are large programs with specifications and other
related documentation much larger then their code. More important, when specifying a syster it
is often impossible to state precisely what is to be done. Typically some claims are made about
what must happen and others describe desirable but less crucial behavior. In any event these
specifications often change, and the system is forced to evolve to meet the new criteria. The
incompleteness and imprecision of the specifications for systeras raakes rigorous verification
difficult, and the impermanence of the specifications reduces the rewards of producing such a
verification.

The complexily of a typical algorithm stems primarily from clever underlying logic (often due
fo obscure optimizations) which requires proof in order to be believed. The intricacies of the
string malching programs menlioned above would Icad one to doubt whether they worked unless a
rigorous proof were presented. If algorithras were subject to evolutionary change, this intricacy
would be a significant liability.

In contrast, a systern is usually made up of a large nuraber of relatively small modules, each
of which ivolves fairly routine code. An expericnced programmer can easily understand and
trust the local operation of such a system by recognizing standard patterns in the code. In other
words, recognition can largely replace formal proof at this level. The complexity of software
systems arices primarily from the number of interactions between modules. These are what make
it difficult to azacss the coffect of a nroposod thange to the system. Systems tend to reach a
point where the number of these interactions overwheims unaided human abilities to manage them.
From that point on, modifications become increasingly bug-prone.
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These distinctions between algorithras and systems point to the need for different kinds of
design aids in the two dcimains. The designer of algorithms needs proof checkers, theorem
provers, and verification systems. While these serve a useful role for the systerm designer as
well, they are not his bread and butter. Instead he needs tools which can help hir evolve designs
which satisfy evolving criteria. Rather than a tool for proving convoluted programs correct, a
systern designer nceds a tool which can structure and remember the straightforward arguraents
for parts of large but routine programs so that the proofs can be used to guide an analysis of the
effects of riodifications.

IV. Problem Solving Theories

Three key ideas in current Artificial Intelligence theories of problem solving are: problem
solving by recognition of the form of the answer, using planning in a simplified "abstraction" space
in order to guide the problem solving process, and using debugging in order to transform an
almost right solution into a corrcct solution.

One hallmark of an expert probler solver is the ability to recognize the forwm of the solution,
to a problem bascd only on a few high level features of the problem description. This reduces
the initially unmanageable search in a very large solution space to an exploration of possibilities
within a rauch smwaller space. In electrical engineering, the form of a solution might be a particular
circuit topology with certain components undetermined. In programming, the form of a solution
might be a particular control strategy with unspecified primitive actions. This problem solving
idea finds its antecedents in the Means-Ends analysis of [Newell, et. al.,, 1959] and in Minsky’s
notion of "islands" [Minsky, 1961] and was later formalized in the Planner programming language
[Hewitt 1972] and its descendants Conniver [McDermott & Sussman 1974] and QA4
[Rulifson et. al. 1973] where the form of the solution is called a plan.

In sufficiently complex situations, a sccond paradigm called planning in an abstraction space,
is also used. An abstraction space is a model of the real world in which some important details
are intentionally omitled. Recognilion of the form of the answer is first attempted in an
abstraction space. If a plan is successfully formulated in the abstraction space, then it is modified
to work in increasing nore realistic spaces until a satisfactory solution is found. This problem
solving paradigm was embodied in the ABSTRIPS program [Sacerdoti 1973].

Both the planning paradigm and the abstract modelling paradigr point to debugging as an
unavoidable part of designing complex systems. The role of debugging in problem solving has
been investigated by Sussman in his HACKER program [Sussman 1973). When a plan is initially
produced by recoznizing the form of the answer in an abstraction space, the plan has associated
with it an explanation of how it achicves its goals. However this "proof of correctness” is likely to
be faulty becauce it depends on assumptions in the model which contradict facls in the real world.
The aliost-right plan is refined by developing a rorc realistic model of the situation and then
using the old "proof cf correctness” to guide the debugging process.

We belicve theee ideas constitute the best understanding to date of how people manage the

complexity of planning and problem solving in complex domains and therefore these ideas should
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form the conceptual basis for developing computer aids for software engineering.

V. What Do Engincers Do?

In this section we discuss some specific techniques which have proved effective in rore
mature enzineering domains such as electrical and mechanical engineering and which we think can
be fruitiully applied to software engineering.

One ight think that engineering is mainly concerned with the optimization of numerical
parameters within physical systems and that computer science therefore has little to gain from the
study of methodolozies used in engincering. However, althouzh engincers are at times concerned
with numerical optimization, it is not their main activity. The dominant problem in engineering is
the management of complexity during desian and analysis.

This can be scen in the following quote
from a standard electrical engineering text [Bose & Stevens 65].

A physical problem is never analyzed exactly. This is a consequence both of our
inability to describe a physical situation completely and of the increasing complexity of
the analysis as greater accuracy is demanded. A problem that involves events in the
rcal world is always approached by making simplitying assumptions that hold only
approximately, thereby iorming a model of the events under study. The problem then
reduces to that of analyzing the wodel. 1f the assuraptions by reans of which the
physical situation was reduced to the model are rcasonable, then our analysis should
produce results that correspond to observed events, and the same type of analysis
should be useful in predicting the behavior for other similar physical situations.

Thus, as the problem solving theories predict, engincers use abstract models to manage the
complexity of their domains. Two particular abstraction téchniques which engineers use are: the
construction of multiple models each of which is accurate only under a restricted set of opcrating
conditions, and the decomposition of complex systems into several possibly overlapping hierachical
Organizalions. Both of these lechniques omit delails which are not relevant to the task at hand.
An example of the first technique is a linear model of a transistor which describes its behavior
accurately only when it is operating within a ccrtain range of frequencics and power. Sometimes
several different models will be used which together form a good overall description, as for
example the DC and frequency domain models for a circuit.

Engineers use decomposition to break up a large system into a (possibly overlapping)
hierarchy of subcystems. Each subsystem is given a simple description which includes only those
aspects of its behavior which are relevant to other subsystems. The whole artifact is then
regarded as a looscly coupled nctwork in which the behavior of the whole system may be
deduced frzin the descriptions of the subsystems. The simplest kind of decomposition involves
only a sinisle non-overlapping hicrarchy. However, sometimes a single component rmay be logically
part of two or more ditferent subsyslems, and sometimes several different decompositions of a
system are neccssary in order to derive convenient descriptions for all of its behavior.

Rich,Shrobe,Waters
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Decomposition is already a common technique in computer science. The use of subroutines
as procoedural abstractions described by their input-output behavior is well established. Data
abstraction techniques allow a another kind of decomposition. Typically, these techniques are
embodied in the features of a programming languaze such as CLU [Liskov et. al. 1977] or ALPHARD
[Wulf 1973). While we recoznize the improvement such languages offer over carlier lanzuages,
we do not belicve that they solve the whole problern. Convenient analysis frequently requires
multiple decompositions of a single system, but unforlunately prograraming languages require that
a system be represented by a single decomposition constained by the way in which the program
is intended {0 exccute. :

The idea of problem solving by recognizing the form of the solution appears in engineering
both in design and analysis. Evidence of this is the development of a vocabulary of useful macro
structures which constitute the abstract forms of the solutions for broad classes of probleris. In
any cnzinecring discipline, the basic units of design are a set of primitives (such as transistors,
resistors, etc. or COus, CAR, COR, etc.) and rules for their legitimate combination. These generate an
infinite number of legitimate combinations only some of which are useful. The macro structures in
the intermediate vocabulary serve as stepping stones which make it cognitively feasible to derive
the useful combinations from the primitives.

We do not intend to imply that there is a unique set of universally useful intermediate
constructs but rather that it is always fruitful to ook for them. Different dorains employ quite
different engineering vocabularies. Once an intermediate vocabulary is developed it expands the
cognitive range of those practitioners who learn the vocabulary. As a result, they are capable of
conceiving of yet more complex combinations, which leads to a higher level engineering
vocabulary. For example, in electrical engineering one first learns to engineer useful networks
using intermediate constructs such as voltaze dividers. In order to combine these into more
coriplex artifacts, one learns a higher level vocabulary including notions such as oscillators and
amplifiers.

In programming the connection between the rmicroscopic and the macroscopic is also
mediated by an intermediate engincering vocabulary. If one .is to work with a particular
programming lanzuage one rmust know what its primitives do. However, program analysis which
exclusively concentrates on the axiomatic description of program primitives is inadequate to deal
with the complexity of real world programs. Indeed most of program understanding happens at a
macro level which is more appropriate to the task at hand. It is at this level that one learns and
remembers the useful patterns of doing things. Fc- example, it is more fruitful to think about two
linked lists, and about "splicing” as a kind of operation on these higher level objects, than to think
of computer memory as a large collection of cells and about changing pointers in particular cells.
In this way, we are much more likely to arrive at a computationally feasible and easily
underctandable descriplion of the behavior of a program. One of our research goals is to crcate a

catalog of intermediate engincering vocabulary for prograraming.
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VI. Plans and Teleology

An engineer must have a representational system within which it is possible to utilize and

coordinate information derived through the techniques described above. In most engineering

| disciplines there is a notion of the "design plan” which forms a skeleton around which all of this

! information is arranged. Of all the issucs discussed so far, the design plan is the one least well

addressed by other current work in computer science. Because the use of plans in software

engincering is a central theme in our approach, we begin the presentation of our current work
with an explanation of what a plan is and how it is represented.

In traditiona! cngincering or software engincering, the behavior of a device or part of a
device can be described in two ways. Some properties of a device are independent of its context
of use. These properties constitute the intrinsic description of the device. For exarple, a
capacitor can be described by the relation I{t) = C dv(l)/dt. The LISP function APPEND can be
described intrinsicaliy by its input-output behavior of returning the concatenation of its
arguments. Intrinsic descriptions correspond to specifications in the literature of software
engincering.

A device may also be described by its role in the plan for a larger mechanism. This is its

extrinsic deccription. For example, a particular capacitor may be described as a coupling
capacitor, a bypass capacitor, or a tuning capacitor, depending upon its purpose in the circuit.
Similarly, apenn may be used to produce the union of two disjoint sets represented as lists, or to
attach a suffix to a root word represented as lists of characters. The abstract form of an answer
retrieved in the process of engineering design is a plan in which each part is specified only by its
4 extrinsic propertics. Synthesis involves filling each role in the plan with a part whose intrinsic
description satisfies the given extrinsic description.

A single part may have several extrinsic descriptions corresponding to raultiple needs that it

satisfies in the larger mechanism. For example, a screw in a camera may fasten two plates

together and also provide a fulcrur about which to pivot a lever. There may also be several
plans for a given device, describing its structure in different dimensions. In this situation, a part
may fill scveral ditferent roles in several different plans. For example, in a radio-frequency
amplifier an inductor may be both part of a resonant circuit in the frequency domain plan and part
of the bias network of a transistor in the DC plan.

The essence of understanding a mechanisin is knowing the purposes of each part. This
involves building a description of the mechanisrn which ratches each part with its roles in the
appropriate plans. Each role in each plan must be filled by some part of the mechanism and the

intrinsic properties of that part must satisfy the extrinsic properties of its roles.

The ulility of this kind of understanding is that it factors knowledge. A given plan fragrment
can appear as part of the plans for many different devices. Therefore understanding the logical
structure of a plan frazment (which may be very difficult) nced only happen once. Any properties
of the plan fragment which can be proven, are known to hold wherever the plan is used. These
plan fragments arc the intermediate vocabulary items discussed in the last section.
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Vil. Representing Plans

In order to look at programs from the viewpoint of a design plan, we have devised a
formalism called plan diagrams which can be used to describe both abstract program patterns and
concrete programs. The basic entities in the plan diagram formalism are segments (input/output
abstractions) and data objects. The formalism supports hierarchical description by allowing
segments within segments (subsegments) and objects within objects (subobjects). The most basic
relationship between these entities ic the applicalion of a segment to a set of input objects,
yielding a set of output objects. The formalism includes four other primitive relationships: data
flow, control flow, control splitting, and control joining. 1t is a straightforward matter to give the
proof rules for the formalism, as has been done in [Rich & Shrobe 1976; Shrobe 1978).

In order to analyze programs written in a particular programming language one nceds to
have definitions for the language’s primitives. We divide programming language primitives into
two categories: connective tissue primitives such as IF-THEN-ELSE, WHILE, variables, argurnent
passing, etc. which are concerned solely with irplementing data and control flow, and actions such
as arithmetic operations, CONS, CAR, CUR, etc. The first category is described by a translational
sematics in which the primitive is mapped into the appropriate pattern of control flow and data
flow links. Actions are represented as segments specified by pre-conditions and post-conditions.
We have already constructed such language semantics for LISP [Rich & Shrobe 1976] and
FORTRAN [Waters 1976,78] and have implemented systeras which translate programs written in
these languages into the plan diagram formalism. The translation process removes many of the
surface features of the particular programming language, creating a flow graph which gives
greater insight into the underlying logical structure.

Each segrent in a plan is constrained either by its spec-type or by its plan-type. The spec-
type of a segiment ic a formal slatement of the relationships which are expected to hold for the
input objects prior to its execution (pre-conditions) and the conditions which are guaranteed to
hold immediately following execution of the segment (post-conditions). These conditions are
expressed in a variant of the Situational Calculus of [McCarthy & Hayes 1969). Each segment has
associated with it an input situation and an ouput situation which are representations for the state
of affairs on entry to and on exit from the cegment.

The plan-type of a segment constrains what plan (i.c. what subsegments, and data and
control flow) is used to implement the behavior specified for the segment by its spec-type. In the
case of recursive programs and loops (which are represented as singly recursive programs) the
plan-type for some subsegment will be the same as the plan-type for the overall segment.

Data objects are similarly described by object-type and plan-type. Object-types are a kind
of data ebstraction decomposing a data object into subobjects satisfying a specified set of
contraints. Implcientation rules constrain the plan-type of segments according to the plan-types
of their input and output objects. The coordination of procedural and data abstraction is an
important and novel feature of our represention systern.

The plan diagrain formalism is intended to facilitate our goal of cataloging the conimon and

useful technigues of programming. The spec-types and object-types are arranged in a tangled
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hierarchy with more specific types inheriting descriptions from their super-types. For example,
the LISP-style association-list is a specialization of both the object-type linked-list and the
object-type as<ociative-data-structure.

In order to represent the logical relationships in a plan, a plan diagram is augmented with a
network of purpose links which summarize how the parts of a prozram interact in order to
produce the behavior of the whole program. These links make it possible for a design aid system
to explain how a program works, and reason about thc potential effects of a modification. There
are two basic ways in which the appropriate purpose links can be developed for a plan. They can
be copied by reference o a stored plan in a catalog cf programming knowlege (sce section X), ar
they can be derived by reasoning directly about the plan itself.

Symbolic execution [Hewitt & Smith 1975; Hanller & King 1976; Rich & Shrobe 1976,78] of
plan diagrams [Shrobe 1972] can be used to reason about programs and to create the appropriate
purpose links. Symbolic exccution of a plan opcrates as follows. A set of anonymous objects
(skolem constants) is created, one object for each input to the outermost segment. Data objects
are propagatcd along the data flow links leading to the initial subsegment. A subsegment is
marked ready whenever all of its incoming data objects are present. The symbolic execution of
the subscgament is then begun. This is done in one of two ways depending on whether it has a
spec-type or plan-type.

If the subsegment is described by a plan-type its symbolic execution proceeds recursively.
Its inputs are propazated along ils data flow links 10 ils subsegments and these are then executed
as they becomre ready. If a subsegment is described only by a spec-type, it is first necessary to
demonstrate that the subsegment’s pre-conditions are satisfied. If this demonstration is
successful, then the subsegment is applicable. Anonymous objects are created to represent the
outputs of the subsegment and the post-conditions of the subsegment are asserted to hold in its
output situation. The output objects are then propagated along data flow links to other
subsegmenls which then become candidates for symbolic execution. Once all the subsegments
have been executed, one then demonstrates that the assertions of the supersegment hold in its
outputl situation. If this is successtul, then the plan has been shown to achieve its desired effect.

The logical arguments which are constructed during this process are suramarized into
purpose links which capture the underlying teleological structure of the plan. There are two basic
kinds of purpose links: prerequisite lirks, which show how the pre-conditions of a subsegment
arc satisfied by the interaction of the pre-conditions and post-conditions of other subsegments,
and achieve links, which record how the pre-conditions and post-conditions of the various
subscgments interact to achieve the post-conditions of their supersegment. These are similar to
the proof summarizations used in [Moriconi 1977].

A plan may be thought of as an abstract program coupled with a logical analysis. However, it
is important 1o note that this logical analysis need not necessarily be a "proof" in the sense of a
guarantce of correctness. Qur reasoning syster [Shrobe 1978] is capable of conducting logical
argumenls which range from informal to rigorous. In many cases the plan for a program will only
contain a “corarmon sense" or engineering type analysis which is inadequate to guarantee
correciness under all conditions, but which is good cnough for purposes of explaining its
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teleological structure. When it is necessary, our reasoning system can be asked to carry out the
verification of certain modules with full rigor. However, in this part of the process, we have made 1
no ad-ances over other verification systems. Qur rmain goal is not the proof of correctness of
large software <ystems, bul rather an cngincering oriented explanation and bookkeeping facility
of sorme sophistication which will make it easier for a software engineer to modify a system while
convincing himsclf that it does what he intends.

Vill. Temporal Abstraction

Temporal abstraction [Shrobe 197&; Waters 1978] is a modelling technique which makes it
more convenient to analyze the logical structure of recursive plans. In a temporal model, the time
behavior of a program is unfolded so that the occurrences of the subsegments can be regrouped
to mare corunon prozramming fragrents more easily identifiable.

For example, consider the following recursive Lisp program which builds a list of the terminal
nodes of a binary tree.

(DEFUN DEPTH-FIRST-FRINGE (TREE)
(PROG (FRINGE) (DEPTH-FIRST-FRINGE1 TREE) (RETURN FRINGE)))
(DEFUN DEPTH-FIRST-FRINGE] (NOUE)
{COND ((ATOM NODE) (SETQ FRINGE (CONS NODE FRINGE)))
(T (DEPTH-FIRST-FRINGE1l (COR NOGE)) !
(DEPTH-FIRST-FRINGE1 (CAR NODE))))) %
We can analyze this program as the corposition of three fragments: |
: (i) a trce-traversal segment, irplemented by the depth-first plan, which

enurrerates the nodes of the tree,
(DEFUN DEPTH-FIRST-FRINGE1 (NODE) |
(COND ((ATOM KODE) ... !
(T (DEPTH-FIRST-FRINGE1 (CDR NODE))
(DEPTH-FIRST-FRINGE1 (CAR NODE)))))
<i) a filter segment which selects out the terminal nodes for further processing,
(COND ((ATOM NODE) ... NODE ...)
(iif) and an accuriuiation segment which builds a list of the selected nodes.
(PROG (FRINGE)
(SETQ FRINGE (CONS NODE FRINGE))
This intuitive decomposition into a aancrator, a filler and an accurnulator has considerable

C S v e T

conceptual power. This section will sketch the formalization of this decomposition used in the
apprentice system. The method is be based on analyzing the history of applications during the
course of an entire computation and grouping these into occurances of segrents of like type.
Given a <ct of inputs to a plan diagram, the rules for symbolic cvaluation unambiguously
specify which of its sub-cegments will be applied ard to which arguments. Each such epplication
is described by an input situation, a set of bindings of data objects with the input narmes of the
sub-segment, an output situation, and a set of bindings for the outputs. The data and control flow
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links impose & natural partial order on the applications corresponding to their order of execution.
A graphical representalion of the plan diagrar for Depth-First-Fringe is shown in Figure 1.
(Cross~haichced lines represent flow of control, solid lines represent data flow. A box with two
sections at its base is a test, one with two sections at its top is a Join. A curly line indicates that
the inncr segiicnt is a recursive instance of the outer segment. Temporal abstraction makes it
possible to model this program with the plan diagram of figure 2.

Ternporal analysis begins with the notion of an occurance set of a particular plan (or spec)
type. Given an application of a plan diagram the "occurance set of typel" consists of all
applications within the plan diagram whose type is typel. In the Depth-First-Fringe prozram
above there are three occurance sets of interest: (1) The occurance set of type Depth-First~
Fringel, (ii) The occurance set of type “Atom Test” and (iii) The occurance set of type “Cons".
These correspond to the three fragments of code identified at the beginning of this section.

Tret

Gengrator
Q::r - s of
3 , ; l Nodes

Car Cdr ; Filter

‘Cou = 7 ' | ISI::."?‘”
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Fizure 1: Plan for Depth-First-Fringe. Figure 2: Terporal model of Depth-First-Fringe.

Next we consider the sets of inputs and outputs of the segments within an occurance set.
An occurance sct consists of applications of segments of a common plan (or spec) type; the plan
diagram for this type provides a set of local names for these segments’ inputs and outputs. For
exampie, the plan diagram for Depth-First-Fringel contains the input name "Mode". 1t is useful to
think of the set of objects which are bound to this name in any application of a segment of type
Cepth-First-Fringel. Given an occurance set and a local name, we define a temporal collection to
be a vet of pairs consisting of (1) data objects which are bound to the selected local narme and (2)
the application in which they are bound. The temporal collection is partially ordered by the
natural order of the applications. If Depth-First-Fringe is applied to the data object Tree~1 then
the termporal collection of Node inputs to scaments of type Depth-First-Fringel will consist of
pairs containing all the nodes of Tree-1 in deplh first order. This is shown diagramatically in
Figure 3.
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For every meraber of the occurance set of type Depth-First-Frinzel there is a data flow link
to an occurance of type Atom-Test. Such a coilection of identical data flow links is called a data
flow bundle. The collection of objects which flow along these links form two temporal collections,
one at the scaments on the initiating side of the data flow links and the second at the terminating
side.

Using thesc concepts to examine the program Depth-First-Fringe makes it possible to
decompose the program into units which can be analyzed by inspection. The occurance sct of
type Depth-First-Fringel is a Binary Tree Traversal; each segment in the set either has an
atomic llode input, or it has data flow links to a CAR and a CDR segment which in turn have data 3
flow links to other seoments of type Depth-First-Fringel. As already mentioned the temporal

collection of MNode inputs to riembers of this occurance set contains all the Nodes of the tree.
There is a data flow bundle from this occurance set to the occurance set of type Atorn Test. The
latter sel is a filler, an occurance sct of identical test seagments. Its input terporal collection
contains all the nodes of the tree. Its output temporal collection is the sub-collection consisting of
all Nodes which satisfy the Atom Test. These are the terminal nodes. There is a data flow bundle
carrying this subset from the Atom-Test occurance set to the Cons occurance set. This last set is
an accumnulation; cach segent in it takes one input from a previous Cons segment. The second
input to each of thece segments flows to it from a member of the Atorn-Test occurance set. This
decomposition is shown diagramatically in Figure 3.
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Figure 3: Termporal decomposition of Depth-First-Fringe.

-

We now build a model of Depth-First-Fringe. We model each occurance set as a single
segment; cach data flow bundic as a single data flow link and cach temporal collection as a single
data object. The resulting model consisis of only three seaments Binary Tree Traversal, Filter,
and Accumulation. The data flow links in the model form a simple pattern, each segment taking a

{ single input from its predecessor. From this viewpoint the program appears is seen as a simple
composition. Notice that the temporal model suzgests the following clear and concise explanation

of Depth-First-Fringe: "The program consists of three steps, first it generates the nodes of the
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tree, second it celects out those nodes which are terriinals, and third it builds a list of these
nodes." This model is shown in figure 2.

IX. Plan Building Methods

The entire process of analyzing a program would be made much easier if it were possible to
decide how to break a program into parts before determining what any of the parts do. One
approach to this segmentation problem is taken by Waters [1978] who has developed and
implemented a system which diccovers the logical segmentation of a large body of common
programs. His analysis is based solcly on recognizing topological patterns of data flow and control
flow without regard for the specifications of the various operations involved. These patterns are
called plan building nicthods (PBMs), because they can be thought of as instructions for how to
combine plans together to form riore complex plans.

The simplest PBMs correspond to the standard structured programming notions of
conjunction, composition, and conditional. More complex PBMs decompose recursive plans by
making usc of temporal abstraction and trajectories.

The recursive PBMs make it possible to construct a temporal model for a recursive program
in which its structure is revealed as the composition of standard segments which can be
understood in isolation from each other. Three basic recursive PBMs produce three types of
standard recursive segments: terminations, filters, and augmentations.

A filter segment is one which tests a temporal sequence of values and selects out a
consistently ordered subset to be acted on by other segments.

A termination segment is one which tests some {emporal sequence of values of values and
can cause the termination of the recursive program as a whole. (The ATOM test in the DEPTH-FIRST-
FRINGE program doubled as both a filter and a termination segment). As such, it determines the
length of all the trajectories in the temporal decomposition of the given recursive plan, but does
not affect what is computed in these trajectories.

All other segments are referred to as augmentations. Augmentations take in trajectories of
values and perform calculations in order to create additional trajectories of values. Typically, an
augmentation will have feedback of data flow to itself, so that it can utilize past values in its
computations. The accumulation segments in Section VIII are augmentations.

The analysis of a recursive plan using PBMs turns out to be straightforward. The basic idea
is that a part of the program atfects the rest of the program only if it either has data flow to
some other part of the program, or controls when some other part of the program will be
excculed. Decomwposition is achieved by locating scgrents of the plan which do not affect
anything in the rest of the pian. (Note that this has lo be weakened slightly in the case of
terminations.) When such a segment is found, it is pulled out of the plan and the process is
repeated until nothing else can be pulled out. The segments that are pulled out are connccted
together terporally by trajectorics as explained in Scction VIIL Thus, Waters’ analysis provides
one means of decomposing systems inlo loosely coupled sub-systems.

An experiment was perforimed in order to determine whether or not the particular PBMs
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.

: chosen had a wide range of applicabilily. A random sample of 20% of the programs in the 1BM
| Scientific Subroutine Package were analyzed in terms of PBMs by hand. All of the programs
| turned out to be analyzable in terms of the the PBMS. More importantly, nearly 90% of the time,
the analysis broke the programs up into segments which were so simple that it was trivial to
understand what the segments themselves were doing.

X. A Library of Plans and Analysis by Inspection

As we have secn, one of the major goals of tewporal abstraction and PBM decomposition is
to facilitate analysis by inspection. The basic idea is to analyze a given program by recognizing

patterns of scgmients in the decomposcd plan as instances of commonly known correct plans
5 stored in a library. Work such as [Barstow 1977] suggests that it is possible to catalog
substantial portions of programming knowledge in a reasonably concise formalisrn. We have begun
a similar cataloging effort [Rich forthcoming] using the plan formalism, which we believe will have
several advantages. Most important among these is the fact that our plan library is not biased
towards either synthesis or analysis, but atternpts to capture the knowledge underlying both.

- The plan library is a formalization of the intermediate vocabulary (Section IV) of software
h engineering. It includes standard plans (palterns of data flow and control flow between specified
subsegments) for implementing common input-output specifications, and standard plans (sets of
objects with constraints between them) for irplementing common data abstractions. Plans in the
library are pre-proven, ie. they have attached to them explanations that can be combined with
3 the explanations of other plans in order to arrive at a complete explanation of how a given
g program works.

Examples of ‘plans that we have formalized arc: (data plans) implementing a set as a list,

1 implementing a binary relation as a hash table, implementing a stack as a sequence plus a cell,

implementing a tree using pairs; (procedural plans) list traversal, tree traversal, filtering, linear

search, sequential accumulation. Many of these plans fit into a specialization hierarchy which aids

in finding the rizht plan during analysis or synthesis. For example, binary tree traversal is a
specialization of tree traversal, and hash tables are a specialization of associative data structure.
One of our rescarch goals is to extend this catalog to include even higher level concepts, such as :
interpreter, data-based system, etc. 3

Recognition of the PBMs was 50 successful because there were a small nurber of them and

e

they were all very diiferent from each other. Recognizing instances of library plans in the plan

for a given program will be more difficult because there are many plans in the library and they
tend to have sorme fealures in common. Qur first approach will be to see how far we can get
continuing the bottom-up style of recognition frora PBM analysis into recognition of the

intermediale vocabulary. However, we will certainly have to eventually develop some top-down
recoznition strategies to make it possible to recognize the very high level concepts.
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X1. Dependency Directed Reasoning and Program Modification

A prototype dependency directed reasoning syster [Shrobe 1978) has been implemented in
the AMORD programming language [de Klcer et. al. 1977]. In a dependency directed system every
new assertion entered into the data base is accompanied by a justification stating which other
asscrtions form the lozical supbOrt for the ncw onc. The justification itself is an object which the
system can inspect and manipulate.

Asscrtions in the rcasoning systera have two states: in or out. An in assertion is one which
is believed. /An out assertion is one not currently believed. A special module called the Truth
Maintainence System (TMS) [Doyle 1978] is responsible for guaranteeing that all assertions with
valid reasons to be believed are in and all assertions which lack valid jusiifications are out. This
facility is particularly flexible because an assertion can be justified by the lack of valid support
for some other assertion. Technically this means that the assertion F1 may have a justification
which depends on the oufness of some other assertion F2. This arounts to saying that as long as
there is no reason to believe F2 one should assume F1. If reason to believe F2 is ever discovered,
the TMS will autormatically bring F2 in and F1 out. Addition of an assertion (F2) can cause another
assertion (F1) to become invalid. Logics with this property are called non-monotonic
[Doyle 197&]). The semantics of such logics is discussed in [McDermott & Doyle 1978).

We see two key applicalions for dependency directed reasoning in software engineering:
hypothetical reasoning during theorem proving and analysis of program modifications. For
example, [Shrobe 1978] describes the use of dependency directed reasoning to reason about
side-effects by first assuming that the degree of sharing between complex data structures is
limited. Various dcsircd propertics of the program are then proven under this simplifying
assuription. Sometimes such a cursory analysis is all that is appropriate. However, when a more
carcful cxploration is desired, the assumption can be removed and replaced by a rmore cautious
assumption or by no assumption at all. In many cases, some of the important properties of the
program do not dcpend on the assurption and rerain in. However, if sore property does in fact
depend on the assumption it will go out indicating that the original proof is no longer valid under
the conditions of sharing. A wore complicated proof of that property can then be aitempted.

A dependency based reasoning system also makes it possible for incremental changes in a
program to necessitate only incremental changes in the analysis of the program. Suppose, for
example, that a programmer decides lo change the representation of some data object from arrays
to binary trees. He would then replace all instances of loops enumerating the elements of the
array wilh {ree {raver- enumeraling the nodes of the tree. Although the new code might bear
little superficial resemblance to the old code, [Shrobe 1978) shows that dependencies make it
possible to handle this change by an incremental re-analysis of the program rather than by a new
analysis from scratch.

[Doyle 1978] shows how dependencics can be used to achieve many of the control
disciplines which have been used in automated theorem proving systems. Most important among
these is dependency directed backtracking in which a contradiction is reroved from the systera
by first identifying those ascumptions which lead through a chain of dependencies to the
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contradiction. A new set of dependencics is consiructed which guarantces that all of these
assumptions cannot be in at the same time. The reasoning system can then select an assuription
to reject. [Stallman & Sussman 1977] show how this technique reduces corbinatorial explosions
in an electrical circuit analysis system. [Shrobe 1979] shows that dependencies are adequate to
achieve the cffect of the contexts of QA4 [Rulifson et. al. 1973]) and Conniver
[McDermott & Sussman 1974] while avoiding some of their problems.

XIl. Conclusion

We intend to furhler develop the modules we now have in order to implement and
experiment with a computer system that can understand and reason about programs using the
methods and representations presented above. This system should be the prototype for an
interactive programming environrent in which both the computer and the human programmer
cooperate to produce software more quickly and reliably than either could do working alone. In
this environment the programmer will treat the computer as if it were a colleague, explaining and
developing the program design interaclively. The computer will play a passive role; its strength
is not desiun but rather careful bookkeeping and criticism.

Ours is only onc of many approaches towards alleviating the currrent software crisis. High
level lanzuages, structured programming, verification, and automatic programring also make claims
to being part of the solution. Indced, a pluralism of approaches scems both warranted and
necessary. However, with the exception of [Moriconi 1977], our work appears to be the only
project which directly confronts the issue of incremental and evolutionary design of large
software systers.

In contrast to automatic programming and the most ambitious high level languazes, the design
aid approach allows an important simplificalion, namely that the computer need not be an expert
in questions of cfficiency. If languages, compilers, and autormatic programming systems are to
raise the level of abstraction of programming significantly, thereby hiding efficicncy
considerations, then they themselves must possess an expertise in efficient implementation
resonably close to that of a competent programmer. Otherwise, they will not be used. A design
aid syster, in contrast, can provide significant assistance with virtually no understanding of
efficiency at all. Furthermore, as techniques for reasoning about efficiency are developed they
can be added to the system. There is always the escape hatch that the prograrmer can modify
automatically generated code without losing the benefits of the design aid. Thus our approach
allows a swiooth transition from a passive assistant to a rore automatic system.

We also set a rmore modest research goal in cormparison to program verification. We do not
seek to guarantee the correctness of a large sofiware system, a task we feel is very much harder
than what current technology can manage. We set instead an intermediate goal of understanding
the structure of the system and using this as a guide to bookkeeping and checking during design
and modification. We cxpect that as our technology for automatically deducing the logical
structure of prozrams progresses it will find application in the area of automatic verification. This
should eventually make it possible to construct verifications (perhaps even for large systems)
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which are more intelligibly structured than presently is the case.
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